Historia astronomii współczesnej.
Początek wieku XVII – sytuacja:
na uniwersytetach wykłada się astronomię na bazie systemu Ptolemeusza,
„De revolutionibus” – I wydanie 1543, II-gie 1566 – krąży po świecie,
w Niderlandach pojawia się wynalazek lunety.

Kiedy observatorzy kierują lunety ku niebu, czas nagle przyspiesza
Kepler’s Laws of Planetary Motion

These laws allow us to calculate astronomical events like eclipses, comets, spacecraft rendezvous, and satellite action.

The Law of Ellipses:
The orbits of planets are ellipses with the sun at one focus.

Kepler’s Law of Equal Areas

The area swept out by a planet in a given time is always equal.

Kepler’s Law of Periods vs. Distances

The periods squared are proportional to the distances cubed.
The period is the time for an orbit (the year).

\[
\left(\frac{T_1}{T_2}\right)^2 = \left(\frac{r_1}{r_2}\right)^3
\]

T is the time for a year
r is the radius of orbit

A równocześnie opublikowane zostają prawa Keplera 1609 – 1619, ostatnie wielkie dzieło astronomii przedteleskopowej.
Odkrycie lunety przypisuje się tradycyjnie holenderskiemu
optykowi Hansowi Lippersheyowi, a sam wynalazek datowany jest na
rok 1608.

Jednakże pierwsze opisy zasad optyki urządzeń
powiększających można znaleźć w dziełach dużo
starszych:

Roger Bacon: *Opus Maius* (1267):
For we can so shape transparent bodies, and arrange them in
such a way with respect to our sight and objects of vision, that
the rays will be reflected and bent in any direction we desire, and
under any angle we wish, we may see the object near or at a
distance... So we might also cause the Sun, Moon and stars in
appearance to descend here below...

Zapiski Leonarda da Vinci z roku 1504:
„Zrób szkła, abyś mógł zobaczyć powiększony obraz Księżyca”, lub: „Aby obserwować
natwę planet, otwórz dach i sprowadź obraz planety na powierzchnię wklęsłego
zwierciadła. Obraz planety odbity przez zwierciadło ukaże powierzchnię planety
w znacznym powiększeniu”.

Giambattista della Porta: *Magiae Naturalis* (1589) i Leonard Digges: *Pantometria* (1571):
zdolność powiększająca układu dwóch luster: wklęsłego i wypukłego.
Galileusz dowiedział się o wynalezieniu lunety w maju 1609 roku i bez pierwotnego zbudował swój własny przyrząd.

Luneta ta składała się z dwóch soczewek: płasko-wypukłej (obiektyw) i płasko-wklęszej (okular). Luneta Galileusza daje obraz pozorny prosty.

Za pomocą swoich lunet Galileusz odkrył cztery największe księżyce Jowisza (Io, Europa, Ganimedes, Kallisto), rozdzielił Drogę Mleczną na gwiazdy, zobaczył fazy Wenus, kratery na Księżycu i plamy na Słońcu, odkrył też „uszy” Saturna.

Największa luneta Galileusza miała 5 cm średnicy i dawała powiększenie 33x.
Thomas Harriot, Anglik, na miesiąc przed Galileuszem obserwował powierzchnię Księżyca za pomocą lunety - 26 lipca 1609.
Obserwacje plam słonecznych.

Thomas Harriot, Anglia, 1610.
Johann Goldsmid (znany jako Johannes Fabricius), Niderlandy, 1610
Galileo Galilei, Włochy, 1611
Christopher Scheiner, Niemcy – marzec 1611.
Jan Heweliusz, Gdańsk, lata 1636 do 1654 – szczegółowo bada ruch i powierzchnię Księżyca.
Rok 1668 – powstaje teleskop zwierciadłany pomysłu I. Newtona.

Rok 1687 – I. Newton łączy fizykę z astronomią prawem powszechnegociążenia.

\[F = G \frac{m_1 \cdot m_2}{r^2} \]
Kometa obserwowana przez E. Halleya zostaje uznana za okresową – rok 1695
J. Bradley odkrywa roczną aberrację światła – rok 1725

Rodzaje aberracji światła:
1) Aberracja dzienna – wynika z ruchu wirowego Ziemi
2) Aberracja roczna – wynika z ruchu orbitalnego Ziemi
3) Aberracja wiekowa – wynika z ruchu wokół centrum Galaktyki
Powszechna akceptacja systemu heliocentrycznego – rok 1751
Odkrycie planety Uran przez C. i W. Herschelów, rok 1781
J. Goodricke stawia hipotezę, że Algol jest układem zaćmieniowym – rok 1783
J. von Fraunhofer kataloguje ciemne prążki w widmie słońca – rok 1814
F. W. Bessel wyznacza pierwszą paralaksę gwiazdy – rok 1838
Pierwsza fotografia tarczy
Słońca – L. Foucault
i A. Fizeau, rok 1845

Pierwsza fotografia Księżyca –
J. Draper, 23 marca 1840
W tym domu, w 1859 roku, Gustav Kirchhoff zastosował opracowaną wraz z Robertem Bunsenem analizę widmową do Słońca i gwiazd, dając tym samym podstawy chemii Wszechświata.
A. J. Ångström odkrywa obecność wodoru w atmosferze Słońca – rok 1862
G. Schiaparelli dowodzi istnienie związku pomiędzy kometami a rojami meteorów – rok 1866
A. J. Cannon klasyfikuje widma gwiazd – rok 1900
Ustawienie 2.5-metrowego teleskopu Hookera na Mount Wilson – rok 1908
E. Hertzsprung i H. N. Russell opracowują diagram jasność – temperatura dla gwiazd – lata 1911 - 1913
H. Leavitt odkrywa zależność pomiędzy okresem zmienności a jasnością absolutną dla cefeid – rok 1912.
A. Einstein publikuje Ogólną Teorię Względności
- 25 listopada 1915 roku

\[G_{ij} = kT_{ij}, \]
\[i, j = 1, 2, 3 \]
The Great Debate
April 26, 1920

Wielka debata
26 kwietnia 1920

Harlow Shapley Heber Curtis
E. Hubble wykazuje, że M31 jest odrębną galaktyką – rok 1925
C. Payne wykazuje, że gwiazdy składają się głównie z wodoru – rok 1925

Pierwszy kobiecy doktorat na Harvardzie – 1925
Pierwszy tytuł „astronoma” dla kobiety – 1938
Pierwszy tytuł profesorski dla kobiety - 1956
E. Hubble i M. Humason odkrywają ucieczkę galaktyk – rok 1929
C. Tombaugh odkrywa Plutona – 18 lutego 1930 roku

DISCOVERY OF THE PLANET PLUTO

January 23, 1930

January 29, 1930
S. Chandrasekhar opracowuje teorię białych karłów – rok 1931
Karl Jansky odkrywa radiopromieniowanie Drogi Mlecznej – rok 1932
H. Bethe opisuje źródła energii gwiazd – rok 1939
Maarten Schmidt odkrywa pierwszego kwazara – rok 1963
V. Rubin mierzy krzywe rotacji galaktyk – rok 1970
A. Riess ogłasza odkrycie przyspieszenia ekspansji Wszechświata – rok 1998
Nagroda Nobla w roku 2011

Saul Perlmutter (½)
Brian P. Schmidt (¼)
Adam G. Riess (¼)

za odkrycie przyspieszającej ekspansji Wszechświata poprzez obserwacje odległych supernowych